## 16. An Introduction to Information

Duarte Gonçalves

University College London

MRes Microconomics

#### Motivation

### **Information acquisition** is crucial in understanding behavior:

Which computer to buy: learn specs, check reviews, known issues.

Who to vote for: check platform, read interviews to understand personality, watch debates to understand possible post-election coalition.

How price product: learn competitors pricing strategy, study demand.

Conflict: military espionage, covert operations.

Developing a new product: tech may or may not prove successful.

#### Motivation

Our focus today: Modelling Info.

Next year: **Acquiring Info**.

Offline Learning (Sampling): learning by existing data e.g. query to database, procuring data, search/expand consideration set (learning product exists), R&D.

#### **Choosing Sources**

e.g. news outlets, financial advisors.

Online Learning (Experimentation): learning by doing e.g. experience goods (movies), trying out different investment strategies.

Decision Time: how much data, time reveals preference intensity, timed stochastic choice data.

Information Acquisition in Strategic Settings.

#### Motivation

#### **Related Issues**

Design: choosing info structure: e.g. which macro variables to measure, designing tests (education, certification, credit ratings), how to bundle data.

Processing: info acquisition s.t. restrictions (can only learn what is available to be learned): e.g. learning specs of computer.

Belief Updating: how do people *use* info to revise beliefs: e.g. memory, info about info, motivated reasoning.

Pricing: how to price info: e.g. advisory services, databases.

Transmission: garbling available info: e.g. advertising, financial reports, speeches, strategic disclosure, statistical office announcements.

Encriptation: secure transmission of info.

Diffusion: how does info spread: e.g. social networks, misinfo, inflation.

## Today

'More information is better': what is the sense of something being more informative?

Today: acquire basic technical tools on information orders (concepts, results)

Acquiring information is costly, but will pay off!

### Overview

- 1. Modelling Information
- 2. Value of Information and Sufficiency
  - Setup
  - Value of Information
  - Sufficiency
- 3. Equivalence Result
  - Proof by Crémer ('82 JET)
- 4. Posterior Distribution
- 5. More
  - Infinite Signal Space
  - Examples
  - Recap

### Overview

- Modelling Information
- 2. Value of Information and Sufficiency
  - Setup
  - Value of Information
  - Sufficiency
- 3. Equivalence Result
- Posterior Distribution
- 5. More

# **Modelling Information**

Unknown state of the world  $\theta \in \Theta = \{\theta_i\}_{i \in [N]}$ 

Prior prob distribution  $\mu \in \Delta(\Theta)$ .

Decision problem:  $u: A \times \Theta \to \mathbb{R}$ ; vNM utility, A compact.

For simplicity, identify action  $a \in A$  with vector of state-contingent payoffs  $a_i := u(a, \theta_i), A \subset \mathbb{R}^N$ .

Statistical experiment or information structure  $\pi := (\pi_{ij})_{i \in [N], j \in [K]}$ 

Prob  $x|\theta = \pi(x|\theta)$ : column-stochastic matrix  $(\pi_{ij} \in [0,1], \sum_{i \in [N]} \pi_{ij} = 1)$ .

Finite signal space X, |X| = K; signal labels have no content

WLOG  $\pi(x) := \sum_{\theta} \pi(x|\theta)\mu(\theta) > 0 \ \forall x$ .

# **Modelling Information**

$$\pi = \begin{pmatrix} \pi(x_1 \mid \theta_1) & \cdots & \pi(x_1 \mid \theta_N) \\ \vdots & \pi(x \mid \theta) & \vdots \\ \pi(x_K \mid \theta_1) & \cdots & \pi(x_K \mid \theta_N) \end{pmatrix}$$

### Value of Information

Posterior prob  $\theta | x$ :  $\mu(\theta | x) = \mu(\theta) \pi(x | \theta) / \pi(x)$ .

EU max:  $U^{A}(\mu|x) := \max_{a \in A} \sum_{\theta} u(a, \theta) \mu(\theta|x)$ .

**Gross value of experiment**  $\pi$  in decision problem A given prior  $\mu$ :

$$G^{\mathcal{A}}(\pi,\mu) := \sum_{x} U^{\mathcal{A}}(\mu|x)\pi(x).$$

#### **Definition**

Given  $\mu$  and A,  $\pi$  is more valuable than  $\pi'$  if  $G^A(\pi,\mu) \geq G^A(\pi',\mu)$ .

Given  $\mu$ ,  $\pi$  is more informative than  $\pi'$  if it is more valuable for all decision problems.

## Statistical Sufficiency

**Experiment:** adding noise to direct observation of state  $\theta$ .

Instead of observing  $\theta$ , get signal  $x \sim \pi(x)$ .

Fully informative if  $\pi$  is identity matrix (up to permutation rows/cols).

Fully uninformative if  $\pi(x|\theta) = \pi(x|\theta')$ ,  $\forall x \in X$ ,  $\forall \theta, \theta' \in \Theta$  (each row is constant vector).

### Adding independent noise to $\pi$ .

 $\pi'$  adds state-independent noise to  $\pi \equiv \pi'$  produces signal y about signal x.

 $\mathcal{B}(K',K)$ : set of all  $K' \times K$  col-stochastic matrices; b is independent from  $\theta$ .

 $b \in \mathcal{B}(K',K)$ : stochastic transformation matrix.

# Statistical Sufficiency

#### **Definition**

An experiment  $\pi_{K\times N}$  is **sufficient** for  $\pi'_{K'\times N}$  if  $\exists b\in \mathcal{B}(K',K)$  such that  $b\pi=\pi'$ .

$$b\pi = \begin{pmatrix} b(y_{1} \mid x_{1}) & \cdots & b(y_{1} \mid x_{K}) \\ \vdots & b(y \mid x) & \vdots \\ b(y_{K'} \mid x_{1}) & \cdots & b(y_{K'} \mid x_{K}) \end{pmatrix} \begin{pmatrix} \pi(x_{1} \mid \theta_{1}) & \cdots & \pi(x_{1} \mid \theta_{N}) \\ \vdots & \pi(x \mid \theta) & \vdots \\ \pi(x_{K} \mid \theta_{1}) & \cdots & \pi(x_{K} \mid \theta_{N}) \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{x'} b(y_{1} \mid x')\pi(x' \mid \theta_{1}) & \cdots & \sum_{x'} b(y_{1} \mid x')\pi(x' \mid \theta_{N}) \\ \vdots & \sum_{x'} b(y_{K'} \mid x')\pi(x' \mid \theta_{1}) & \cdots & \sum_{x'} b(y_{K'} \mid x')\pi(x' \mid \theta_{N}) \end{pmatrix}$$

$$= \begin{pmatrix} \pi'(y_{1} \mid \theta_{1}) & \cdots & \pi'(y_{1} \mid \theta_{N}) \\ \vdots & \pi'(y_{K} \mid \theta_{1}) & \cdots & \pi'(y_{K} \mid \theta_{N}) \end{pmatrix} = \pi'$$

Example: Clinical test + diligent vs sloppy nurse.

Quality control with better/worse technology.

### Overview

- 1. Modelling Information
- 2. Value of Information and Sufficiency
- 3. Equivalence Result
  - Proof by Crémer ('82 JET)
- 4. Posterior Distribution
- 5. More

## **Equivalence Theorem**

#### **Re-write definitions**

```
Information structure: \pi: \Theta \to \Delta(X); feasible signals S(\pi) := \bigcup_{\theta} \text{supp}(\pi(\theta)).
```

Stochastic map:  $\alpha: X \to \Delta(Y)$ .

Extension of a stochastic map:  $\bar{\alpha}: \Delta(X) \to \Delta(Y)$ ,  $\bar{\alpha}(q):=\sum_{x} q(x)\alpha(x)$ 

Composition  $\beta \circ \alpha : X \to \Delta(Z)$  of two stochastic maps  $\alpha : X \to \Delta(Y)$  and

 $\beta: Y \to \Delta(Z)$ 

 $(\beta \circ \alpha)(z|x) = \sum_{y} \beta(z|y)\alpha(y|x); \text{ composition is associative, } (\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma).$ 

## **Equivalence Theorem**

## Theorem (Blackwell '51, '53)

The following are equivalent:

- (1)  $\pi'$  is a garbling of  $\pi$ ;
- (2)  $\pi$  is more informative than  $\pi'$ , i.e.,  $\forall A, \mu, G^A(\pi, \mu) \geq G^A(\pi', \mu)$ ;
- (3)  $\forall A, P(\pi) \supseteq P(\pi')$ .

We'll focus on showing (1)  $\iff$  (2).

Sufficient  $\implies$  + informative is unsurprising if agent has  $\pi$ , can always mimic  $\pi'$  by randomizing themselves.

Sufficient  $\iff$  + informative is surprising: result does not depend on prior.

# Proof by Crémer ('82 JET)

Proof by contrapositive: not sufficient  $\iff$  find problem A & prior  $\mu$  s.t.

$$G^A(\pi',\mu) > G^A(\pi,\mu)$$

(i)  $\pi' \notin \mathcal{B}\pi := \{b\pi \mid b \in \mathcal{B}\}\$ (i.e.  $\nexists b \in \mathcal{B}$  s.t.  $\pi' = b\pi$ )

$$\iff$$
 (ii)  $\exists q_{v,\theta} \in \mathbb{R}^{K',N}$  s.t.  $\forall b \in \mathcal{B}$ ,

$$\sum_{y,\theta} q_{y,\theta} \pi'(y|\theta) > \sum_{y,\theta} q_{y,\theta}(b\pi)(y|\theta) = \sum_{y,\theta} q_{y,\theta} \sum_{x} b(y|x) \pi(x|\theta) = \sum_{x} \sum_{y} b(y|x) \sum_{\theta} q_{y,\theta} \pi(x|\theta)$$

Proof:  $\mathcal{B}\pi$ : closed and convex; by separating hyperplane thm,  $\pi' \notin \mathcal{B}\pi \iff \exists \operatorname{such} q$ 

$$\iff$$
 (iii)  $\exists q_{v,\theta} \in \mathbb{R}^{K',N}$  s.t.  $\forall b \in \mathcal{B}$ ,

$$\sum_{y,\theta} q_{y,\theta} \pi'(y|\theta) > \sum_{x} \max_{y} \left\{ \sum_{\theta} q_{y,\theta} \pi(x|\theta) \right\}$$

Proof:  $\sum_{x} \max_{y} \sum_{\theta} q_{y,\theta} \pi(x|\theta) \ge \sum_{x} \sum_{y} b(y|x) \sum_{\theta} q_{y,\theta} \pi(x|\theta)$  and

$$\exists b \in \mathcal{B} : b(y|x) = \mathbf{1}_{y=y^*(x)},$$

where  $y^*(x)$  selection of arg max<sub>y</sub>  $\sum_{\theta} q_{y,\theta} \pi(x|\theta)$ 

# Proof by Crémer ('82 JET)

(iii) 
$$\exists q_{V,\theta} \in \mathbb{R}^{K',N} \text{ s.t. } \forall b \in \mathcal{B}$$
,

$$\sum_{y,\theta} q_{y,\theta} \pi'(y|\theta) > \sum_{x} \max_{y} \left\{ \sum_{\theta} q_{y,\theta} \pi(x|\theta) \right\}$$

 $\iff$  (iv)  $\forall \mu \gg 0$ ,  $\exists u_{\partial^y,\theta} \in \mathbb{R}^{K',N}$  s.t.

$$\sum_{y} \pi'(y) \sum_{\theta} u(a^{y}, \theta) \mu(\theta|y) > \sum_{x} \pi(x) \max_{y} \left\{ \sum_{\theta} u(a^{y}, \theta) \mu(\theta|x) \right\}$$

Proof: 
$$u(a^y, \theta) := q_{y,\theta}/\mu(\theta)$$
; then  $q_{y,\theta}\pi'(y|\theta) = q_{y,\theta}\frac{\pi'(y)\mu(\theta|y)}{\mu(\theta)} = \pi'(y)u(a^y, \theta)\mu(\theta|y)$ 

$$\iff$$
 (v)  $\exists A, \mu$  such that  $G^A(\pi', \mu) > G^A(\pi, \mu)$ 

Proof:  $A = \{a^y\}_y$ ,  $u : A \times \Theta$  s.t.  $u(a^y, \theta)$ 

$$G^{A}(\pi',\mu) \geq \sum_{y} \pi'(y) \sum_{\theta} u(a^{y},\theta) \mu(\theta|y) > \sum_{x} \pi(x) \max_{y} \left\{ \sum_{\theta} u(a^{y},\theta) \mu(\theta|x) \right\} = G^{A}(\pi,\mu)$$

## Overview

- Modelling Information
- 2. Value of Information and Sufficiency
- Equivalence Result
- 4. Posterior Distribution
- 5. More

# Mean-Preserving Spreads

#### **Definition**

Let X, Y be r.v. taking values in  $\mathbb{R}^n$ .

A  $P_X$  is a **mean-preserving spread** of  $P_Y$  ( $P_Y \ge_{MPS} P_X$ ) if  $\mathbb{E}[X|Y] = Y$ .

 $P_Y$  is then said a mean-preserving contraction of  $P_X$ .

## **Proposition**

$$P_X \text{ MPS } P_Y \text{ iff } X \stackrel{d}{=} Y + \varepsilon \text{ where } \mathbb{E}[\varepsilon|Y] = \mathbf{0} \ \ (\varepsilon := \mathbb{E}[X|Y] - X).$$

$$P_X \text{ MPS } P_Y \implies P_Y \geq_{SOSD} P_X.$$

$$P_X$$
 MPS  $P_Y$  iff  $\mathbb{E}_{P_X}[u(X)] \ge (\le) \mathbb{E}_{P_Y}[u(Y)]$  for all nondecreasing convex (concave)  $u : \mathbb{R}^n \to \mathbb{R}$  whenever both expectations exist.

$$\geq_{MPS}, \geq_{FOSD} \subseteq \geq_{SOSD}.$$

MPS also called convex order and written as  $\geq_{cx}$ .

### MPS: why are we talking about this?

$$\mu \in \Delta(\Theta)$$
,  $x \sim \pi(\cdot|\theta)$ .

$$U^A: \Delta(\Theta) \to \mathbb{R}, U^A(\mu) := \max_{a \in A} \mathbb{E}_{\mu}[u(a, \theta)]$$
 $U^A \text{ is convex in beliefs}$ 

Posterior beliefs are a mean preserving spread of the prior:  $\mathbb{E}[\mu(\theta|x)] = \mu(\theta) \ \forall \theta$  i.e. information generates MPS of beliefs.

 $\implies$   $G^A(\pi,\mu) \ge G^A(\pi',\mu) = U^A(\mu)$  for any fully uninformative  $\pi'$  ( $\equiv$  no info).

Idea: + informative  $\iff$  MPS of posteriors.

### **Proposition**

 $\pi$  is sufficient for  $\pi'$  iff  $\mu(\theta|x)$  MPS of  $\mu(\theta|y)$   $\forall \mu$ , where  $x \sim \pi(\cdot|\theta)$ ,  $y \sim \pi'(\cdot|\theta)$ .

#### **Proof**

Let 
$$\mu \gg 0$$
 wlog,  $|\Theta| = N$ ,  $|S(\pi)| = |X| = K$ ,  $|S(\pi')| = |Y| = K'$ ,  $\beta, b \in \mathcal{B}(K, K')$   $\mu_{1 \times N}, \pi_{N \times K}, \pi'_{N \times K'}$ .

- (i)  $\mu(\cdot|x)$  MPS  $\mu(\cdot|y)$  if  $\exists \beta \in \mathcal{B}(K,K')$  s.t.  $\sum_{x} \beta_{xy} \mu(\cdot|x) = \mu(\cdot|y)$ .
- (ii)  $\pi$  sufficient for  $\pi'$  if  $\exists b \in \mathcal{B}(K, K')$  s.t.  $\pi b = \pi'$ .
- (i)  $\Longrightarrow$  (ii):  $G^A(\pi,\mu) = \mathbb{E}[U^A(\mu(\cdot|x))] \ge \mathbb{E}[U^A(\mu(\cdot|y))] = G^A(\pi',\mu)$  and use Blackwell's thm.

Focus on (i)  $\iff$  (ii).

## **Proposition**

 $\pi$  is sufficient for  $\pi'$  iff  $\mu(\theta|x)$  MPS of  $\mu(\theta|y)$   $\forall \mu$ , where  $x \sim \pi(\cdot|\theta)$ ,  $y \sim \pi'(\cdot|\theta)$ .

#### **Proof**

Let 
$$\mu \gg 0$$
 wlog,  $|\Theta| = N$ ,  $|S(\pi)| = |X| = K$ ,  $|S(\pi')| = |Y| = K'$ ,  $\beta, b \in \mathcal{B}(K, K')$   $\mu_{1 \times N}, \pi_{N \times K}, \pi'_{N \times K'}$ 

- (i)  $\mu(\cdot|x)$  MPS  $\mu(\cdot|y)$  if  $\exists \beta \in \mathcal{B}(K,K')$  s.t.  $\sum_{x} \beta_{xy} \mu(\cdot|x) = \mu(\cdot|y)$
- (ii)  $\pi$  sufficient for  $\pi'$  if  $\exists b \in \mathcal{B}(K, K')$  s.t.  $\pi b = \pi'$

Prelim: 
$$\operatorname{diag}(\mu)\pi$$
 is  $N \times K$ ,  $(\operatorname{diag}(\mu)\pi)_{\theta,X} = \mu(\theta)\pi(x|\theta)$   
 $\mu\pi = \sum_{\theta} \mu(\theta)\pi(x|\theta)$ ,  $\operatorname{diag}(\mu\pi)_{K \times K}$ 

Posteriors:  $\mu(\theta|x)_{\theta,x} = \operatorname{diag}(\mu)\pi(\operatorname{diag}(\mu\pi))^{-1}$  is  $N \times K$ .

From b,  $\pi$ ,  $\mu$  construct  $\beta$  s.t.  $diag(\mu)\pi(diag(\mu\pi))^{-1}\beta = diag(\mu)\pi b(diag(\mu\pi b))^{-1}$ .

## **Proposition**

 $\pi \text{ is sufficient for } \pi' \text{ iff } \mu(\theta|x) \text{ MPS of } \mu(\theta|y) \text{ } \forall \mu \text{, where } x \sim \pi(\cdot|\theta) \text{, } y \sim \pi'(\cdot|\theta).$ 

#### **Proof**

$$\begin{aligned} \text{diag}(\mu)\pi(\text{diag}(\mu\pi))^{-1}\beta &= \text{diag}(\mu)\pi b(\text{diag}(\mu\pi b))^{-1} \\ \iff & \pi(\text{diag}(\mu\pi))^{-1}\beta &= \pi b(\text{diag}(\mu\pi b))^{-1} \\ \iff & 0 &= \pi \left[ \left(\text{diag}(\mu\pi)\right)^{-1}\beta - b(\text{diag}(\mu\pi b))^{-1} \right] \\ \iff & 0 &= \pi(\text{diag}(\mu\pi))^{-1} \left[\beta - \text{diag}(\mu\pi)b(\text{diag}(\mu\pi b))^{-1} \right] \end{aligned}$$

$$\begin{split} \beta &= \text{diag}(\mu\pi)b(\text{diag}(\mu\pi b))^{-1} = \left(\frac{b(y|x)\sum_{\theta}\mu(\theta)\pi(x|\theta)}{\sum_{x'}b(y|x')\sum_{\theta}\mu(\theta)\pi(x'|\theta)}\right)_{x,y} \\ &= \left(\frac{b(y|x)\pi(x)}{\sum_{x'}b(y|x')\pi(x')}\right)_{x,y} \in \mathcal{B}(K,K') \end{split}$$

## Overview

- 1. Modelling Information
- Value of Information and Sufficiency
- 3. Equivalence Result
- 4. Posterior Distribution
- 5. More
  - Infinite Signal Space
  - Examples
  - Recap

# Infinite Signal Space

Results generalize to infinite signal spaces, but need to be careful

(Euclidean spaces, Borel  $\sigma$ -algebra, measurability, etc; see Le Cam '64, '96).

 $(X, \pi)$ : experiment;  $X \sim \pi(\cdot | \theta)$ .

Finite  $\Theta$ :  $\exists b : S(\pi) \to \Delta(S(\pi'))$  s.t.  $\pi'(\tilde{S}|\theta) = \int b(s)d\pi(s|\theta)$ .

Straightforward general definition:

#### **Definition**

Experiment  $(X, \pi)$  is sufficient for  $(Y, \pi')$  if  $\exists$  r.v.  $Z \sim F$  independent of  $\theta$  and h(X, Z) s.t.  $h(X, Z) \sim \pi'(\cdot | \theta), \forall \theta \in \Theta$ .

h(X,Z) is a garbling of X: adds noise to  $X \implies$  conveys less info about  $\theta$ .

e.g. 
$$Y \stackrel{d}{=} h(X, Z) = X + Z$$
.

## Examples

#### Experiments satisfying sufficiency:

$$\Theta = S = \{0, 1\}; X \sim \mathbb{P}(S = \theta | \theta) = p \text{ and } Y \sim \mathbb{P}(S' = \theta | \theta) = p' \leq p.$$

$$X \sim N(\theta, \sigma)$$
 and  $Y \sim N(\theta, \sigma')$ ,  $\sigma' \geq \sigma$  and known.

$$X \sim U(\theta - 1, \theta + 1)$$
 and  $X \sim U(\theta - k, \theta + k), k \in \mathbb{N}$ .

#### Experiments that do not satisfy sufficiency:

 $\Theta = \mathbb{R}$ ;  $X = \theta + \varepsilon$ ,  $Y = \theta + \delta$ ,  $\varepsilon$  normally distrib and  $\delta \perp \varepsilon$ ,  $\delta$  **not** normally distrib.

 $\mathbb{V}(\epsilon), \mathbb{V}(\delta) > 0; \text{ not ranked no matter how much noisier one is relative to the other.}$ 

$$\Theta \subseteq \mathbb{R}^2$$
,  $X \sim N(\theta_1, \theta_2)$  and  $Y \sim N(\theta_1, \theta_2')$ ,  $\theta_2' \ge \theta_2$  but unknown.

$$X \sim U(\theta - 1, \theta + 1)$$
 and  $X \sim U(\theta - k, \theta + k), k \notin \mathbb{N}$ .

Blackwell ordering of information is very incomplete.

### Recap

Framework is the backbone of information economics (theory, macro, finance, IO, etc.). And you'll see it again in term 2.

**Blackwell Order:** 
$$\pi \geq_B \pi' \iff \forall A, \mu, G^A(\pi, \mu) \geq G^A(\pi', \mu)$$

 $\iff \exists b : \pi' = b\pi \iff \text{posterior beliefs induced by } \pi \text{ are MPS of those induced by } \pi'.$ 

Less informative = Garbling. Tight characterisation.

More informative = more valuable

⇒ Costs to information should be monotone in the Blackwell order.

Blackwell order very incomplete. Lots of ways to complete it; e.g., mutual information (the Cobb-Douglas of information costs).

Recent interest in trying to go beyond Bayesian DM framework and incorporate belief updating biases.

Providing genuinely private information? Private private information.

Comparing many weak diagnostic tests vs expensive clinical test: Blackwell in large samples.

Measuring effectiveness of information campaign?